

Reverse Knowledge Distillation: Training a Large Model using a Small One for Retinal Image Matching on Limited Data

Sahar Almahfouz Nasser*, Nihar Gupte*, and Amit Sethi

Electrical Engineering Department, Indian Institute of Technology Bombay

Introduction

Retinal Image Matching (RIM)

 plays a crucial role in monitoring disease progression and treatment response

RIM is challenging due to:

- Variations in blood vessels, optic nerve position, and other features
- Pathological Changes
- Limited overlap
- Non-rigid transformation
- Inter-subject variabilities
- Real-time processing: demanding efficient and rapid algorithms

(Source: Sabanovic et al, 2017)¹

RIM Pipeline

- Keypoint detection and feature extraction
- Traditional keypoint detection methods
 - Harris corner detector, SIFT, SURF
 - Drawbacks:
 - Time consumption
 - Limited accuracy under lighting and viewpoint changes, occlusions and cluttered backgrounds
- DL-based keypoint detectors
 - Oriented fast and rotated BRIEF (ORB)
 - SuperPoint
 - Low dimensional step pattern analysis (LoSAP)
 - Greedily Learned Accurate Match Points (GLAMpoints)
 - SuperRetina (SOTA)

Datasets

MeDAL-Retina dataset ¹

- 261 normal images (Train/Val: 208/61)
- Annotations: intersections, crossovers, and bifurcations
- Avg. number of keypoints: 42.96 ± 14.03
- Sources: 201 from e-ophtha, 60 images from retinal disease classification dataset
- 1.9K images collected from public resources
- Data Preparation: z-score normalization, CLAHE, Gamma correction

FIRE dataset for testing only ²

- 129 images of three categories: S, P, A
- S: 71 pairs, overlap>75%, minimal anatomical differences
- P: 49 pairs, significant differences (shift, rotation)
- A: 14 pairs, images acquired at different examinations

A Visual comparison between MeDAL-Retina ¹ and FIRE ² datasets

Thanks to Nihar, Prateek, Keshav, Tanmay for helping in dataset Preparation

¹ Gupte, N., Almahfouz Nasser, S., Garg, P., Singhal, K., Jain, T., Aditya, Kumar, R., & Sethi, A. (2023). MeDAL-Retina [Dataset]. Retrieved from [https://www.dropbox.com/sh/o8q84e2eg54ay3d/AADiAkNr6bFQDoFaKeEjpYtra?dl=0]

² Carlos Hernandez-Matas, Xenophon Zabulis, Areti Triantafyllou, Panagiota Anyfanti, Stella Douma, and Antonis A Argyros. Fire: fundus image registration dataset. Modeling and Artificial Intelligence in Ophthalmology, 1(4):16–28, 2017

Proposed Method

- SuperRetina¹ Semi-supervised learning
- Architecture: encoder, keypoint detector, keypoint descriptor
- Types:
 - Unet-empowered SuperRetina
 - Large kernel-empowered
 SuperRetina (Ours1)
 - Swin UNETR-empowered
 SuperRetina (Ours2)

The general architecture of SuperRetina

Proposed Method: UNet-based SuperRetina

$$I_{total} = I_{det} + I_{des}$$
 $I_{det} = I_{clf} + I_{geo}$
 $I_{clf}(I;Y) = 1 - \frac{2 \cdot \sum_{i,j} (P \circ \tilde{Y})_{i,j}}{\sum_{i,j} (P \circ P)_{i,j} + \sum_{i,j} (\tilde{Y} \circ \tilde{Y})_{i,j}}$
 $I_{des}(I,H) = \sum_{(i,j) \in \tilde{P}} \max(0, m + \Phi_{i,j} - \frac{1}{2}(\Phi_{i,j}^{rand} + \Phi_{i,j}^{hard}))$

 I_{clf} : Dice-based classification loss

Igeo: Dice-based geometric loss

I_{des}: Descriptors loss

 \tilde{Y} : Smoothed version of the binary ground truth labels Y

P: Keypoint heatmap

Φ: Distance value

Geometric Loss: Credits ¹

Proposed Method: Large Kernel-based SuperRetina

Large kernel-empowered SuperRetina

- Introducing kernels of various sizes
 in each of the encoder's layers
- Capturing long range dependencies
- Kernels: 1x1, 3x3, 5x5
- SOTA in terms of mAUC

The general architecture of SuperRetina

Proposed Method: Transformer-based SuperRetina

Swin UNETR-empowered SuperRetina

- A transformer-based encoder
- Swin transformer and CNN in a Unet-style architecture
- Reverse Knowledge distillation
 - A teacher (CNN) guides a student (transformer)
 - Generalization: drop out 50%

Loss Function

$$I_{det} = I_{clf}^{'} + I_{geo} \tag{1}$$

$$I_{clf}^{'} = I_{clf} + I_{clf}^{RKD} \tag{2}$$

$$I_{clf}(I;Y) = 1 - \frac{2.\sum_{i,j}(P \circ \tilde{Y})_{i,j}}{\sum_{i,j}(P \circ P)_{i,j} + \sum_{i,j}(\tilde{Y} \circ \tilde{Y})_{i,j}}$$
(3)

$$I_{clf}^{RKD}(I_S; I_T) = 1 - \frac{2.\sum_{i,j} (P_S \circ P_T)_{i,j}}{\sum_{i,j} (P_S \circ P_S)_{i,j} + \sum_{i,j} (P_T \circ P_T)_{i,j}}$$
(4)

$$I_{Des} = I_{des} + I_{des}^{RKD} \tag{5}$$

$$I_{des}(I,H) = \sum_{(i,j)\in\tilde{P}} \max(0, m + \Phi_{i,j} - \frac{1}{2}(\Phi_{i,j}^{rand} + \Phi_{i,j}^{hard}))$$
 (6)

 I_{clf} : Dice-based classification loss

Igeo: Dice-based geometric loss

l_{des}: Descriptors loss

 \tilde{Y} : Smoothed version of the binary ground truth labels Y

 P_S : Keypoint heatmap of the student

 P_T : Keypoint heatmap of the teacher model

 \tilde{P} : Non-maximum supressed keypoint set for each keypoint (i,j)

Φ: Distance value

Evaluation Metrics

- Failure rate
- Acceptance rate
- The median distance
- The maximum distance
- AUC (easy, moderate, hard, and mean)

Results

Method	Failed	Inaccurate	Acceptable	AUC-Eas	y AUC-Mod	AUC-Har	d mAUC
SIFT, IJCV04 [25]	0.00%	20.15%	79.85%	0.903	0.474	0.341	0.573
PBO, ICIP10 [26]	0.75%	28.36%	70.89%	0.844	0.691	0.122	0.552
REMPE, JBHI20 [18]	0.00%	02.99%	97.01%	0.958	0.660	0.542	0.720
SuperPoint, CVPRW18 [13]	0.00%	05.22%	94.78%	0.882	0.649	0.490	0.674
GLAMpoints, ICCV19 [37]	0.00%	07.46%	92.54%	0.850	0.543	0.474	0.622
R2D2, NIPS19 [28]	0.00%	12.69%	87.31%	0.900	0.517	0.386	0.601
SuperGlue, CVPR20 [34]	0.75%	03.73%	95.52%	0.885	0.689	0.488	0.687
NCNet, TPAMI22 [29]	0.00%	37.31%	62.69%	0.588	0.386	0.077	0.350
SuperRetina [23]	0.00%	01.50%	98.50%	0.940	0.783	0.542	0.755
Ours-1 (Large kernel-SuperRetina)	0.00%	00.75%	99.25%	0.942	0.783	0.558	0.761
Ours-2 (Swin UNETR-SuperRetina)	0.00%	00.00%	100.0%	0.935	0.780	0.550	0.755

The superior method is determined by having a higher acceptance rate or AUC, and lower rates of inaccuracies or failures

Ablation Studies

Method	Failed	Inaccurate	Acceptable	AUC-Easy	AUC-Mod	d AUC-Hard	d mAUC
SuperRetina [22], KS 3 × 3	0.00%	01.50%	98.50%	0.940	0.783	0.542	0.755
LK-SuperRetina, KS $1 \times 1, 3 \times 3, 5 \times 5$	0.00%	00.75%	99.25%	0.942	0.783	0.558	0.761
LK-SuperRetina, KS $1 \times 1, 3 \times 3, 5 \times 5, 7 \times 7$	0.00%	02.25%	97.74%	0.925	0.717	0.502	0.714
Swin UNETR-SuperRetina, Trained from scratch	0.00%	16.55%	83.45%	0.891	0.649	0.318	0.619
Swin UNETR-SuperRetina, SuperRetina as teacher w/o dropout (DO)	0.00%	01.5%	98.50%	0.947	0.769	0.549	0.755
Swin UNETR-SuperRetina, SuperRetina as teacher, DO 50%	0.00%	00.00%	100.0%	0.935	0.780	0.550	0.755
Swin UNETR-SuperRetina, LK-SuperRetina as teacher, DO 50%	0.00%	00.75%	99.25%	0.914	0.774	0.558	0.749
Pretrained Swin UNETR-SuperRet., LK-SuperRet. as teacher, DO 50%	0.00%	00.75%	99.25%	0.928	0.774	0.559	0.754

- 50% dropout, resulting in a significant performance boost for the Swin UNETR-empowered SuperRetina
- **100**% accuracy on the testing dataset
- RKD model has **2.5%** accuracy boost over the baseline

Results

 RKD model has more number of good matches for all categories (Easy, Moderate, and Hard)

Geometric Registration: Image Matching

A. Retinal image matching

B. Face Alignment

Face Alignment

- The Wider Facial Landmarks in-the-wild (WFLW) dataset ¹
- 10,000 faces, with 7,500 for training and 2,500 for testing
- 98 annotated landmarks
- Wide range of variations
- Loss is MSE

$$l_{mse}^{'} = l_{mse} + \lambda l_{mse}^{RKD}$$

Where Lambda is a balancing factor

Samples from WFLW dataset ¹

RKD-SR combines the favorable aspects of both

models

- Only RKD-SR demonstrates robustness against outliers
- RKD-SR achieves a 9.51%
 reduction in normalized mean
 error (NME) compared to the
 baseline SuperRetina

Results

Method	SuperRetina	Swin U-SR	RKD-SR
NME(%)	20.43	11.15	10.92

Contact Details:

<u>sahar.almahfouz.nasser@gmail.com</u> <u>www.linkedin.com/in/sahar-almahfouz-nasser</u>

