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The Tutorial's Agenda:

@ Transformer’s Input Vs. Graph
@ History of Transformers

@ Graph Transformers
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Why | got interested in topic?
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First paper on graph transformer network is Gradient-Based
Learning Applied to Document Recognition by Yann Lecun 1998
[LeCun et al., 1998]
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https://ieeexplore.ieee.org/abstract/document/726791
https://ieeexplore.ieee.org/abstract/document/726791

GNN Vs. Transformer

Transformer layer can be seen as a special GNN that runs on a
fully- connected “word" graph!

Since each word attends to all the other
words, the computation graph of a
transformer layer is identical to that of a GNN 4
on the fully-connected “word"” graph. am (

Stanford

(Complete) Graph

@ In NLP: sequential structured data

@ In Graphs: arbitrary structured data
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@ Most Graph Transformer Architectures address the problem of
over-squashing and limited long-range dependencies in GNNs,
but they also significantly increase the complexity from O(E)

to O(N?)
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@ Swin Transformer [Liu et al., 2021]
o Linear complexity w.r.t number of patches(shifted window)

o Partitioned window trick for cross window interactions

e Patch merging to have hierarical vision transformer

o MetaFormer [Yu et al., 2022] In a transformer architecture
what matters is not the token mixing technique

@ First paper on graph transformer network is Gradient-Based
Learning Applied to Document Recognition by Yann Lecun
1998 [LeCun et al., 1998]
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MetaFormer [Yu et al., 2022]
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Figure 2: What is truly responsible for the success of the transformers
and their variants?
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X = InputEmb(I)
Y = TokenMixer(Norm(X)) + X

Z =o(Norm(Y)Wy))Wa + Y

where X € RVXC InputEmb: is the patch embedding function, I:
is the input image, W; € REXC W, € RCXC v is the MLP
expansion ratio, o: is ReLU or GELU

Sahar Almahfouz Nasser Graphs Connect Things



Graph Transformer Networks (Neurips-2019)

@ GTNs [Yun et al., 2019] are useful when having hetrogeneous
graphs

@ GTNs form new homogeneous graphs from hetrogeneous
graphs by creating new connections between nodes
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GTN's Architecture

Figure 3: Graph Transformer Networks (GTNs) learn to generate a set of
new meta-path adjacency matrices A() using GT layers and perform
graph convolution as in GCNs on the new graph structures. Multiple
node representations from the same GCNs on multiple meta-path graphs
are integrated by concatenation and improve the performance of node
classification. [Yun et al., 2019]
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GTN's Architecture
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Figure 4: Graph Transformer Layer softly selects adjacency matrices
(edge types) from the set of adjacency matrices A of a heterogeneous
graph G and learns a new meta-path graph represented by A via the
matrix multiplication of two selected adjacency matrices Q1 and Q2. The
soft adjacency matrix selection is a weighted sum of candidate adjacency
matrices obtained by 1 x 1 convolution with non-negative weights from
softmaxW_2[Yun et al., 2019]
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A Generalization of Transformer Networks to Graphs

(2020) [Dwivedi and Bresson, 2020]

The paper addresses the

@ The differences between NLP transformer and Graph
transformer in terms of attention (dense global attention
versus sparse and local attention)

@ The positional encoding and edge encoding

@ Using an architecture identical to NLP transformer
architecture
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Architecture
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@ NLP: dense structure, and scalable to consider full attention

@ Graphs: arbitrary connectivity structure, and full attention is
not feasible

o [Dwivedi et al., 2020] Proved that Laplacian PE generalize the
sinusoidal PE used in NLP transformers

@ The architecture extended to have edge representation which
can be critical to tasks with rich informations on the edges
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Do Transformers Really Perform Badly for Graph

Representation? (Neurips, 2021) [Ying et al., 2021]
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@ Structural Encoding: centrality encoding

h = x + Z,

+
deg~(v) T Z.

degt(v;)
where x; is the node features vector, and Z's are learnable
vectors.

e Spatial Encoding: a function ® measures the relation (the
shortest path) between two nodes i and j

(hiWg)(hiWi)™
Aij = Vg ety

where b is a scalar
o Edge Encoding:

hiWo)(hiWi)T
( Q)\(fa{ k) + bo(v;v;) T Cijj

Aj =

_ 1N ENT
Where ¢;j = § Y1 Xen(W;)



Do Transformers Really Perform Badly for Graph

Representation? (Neurips, 2021) [Ying et al., 2021]

In this work:

@ They showed that the current GNNs such as GINE, GCN,
GraphSAGE,..etc, are special cases of graph transformer

@ The usage of the virtual node (similar to the class token in
transformer) helps in representing the whole graph and these
information transferred to all the nodes

@ Result: Graphormer does not suffer from oversmoothing
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Recipe for a General, Powerful, Scalable Graph

Transformer (Neurips, 2022) [Rampések et al., 2022]

Positional encodings (PE) | Structural encodings (SE) | Graph features

layers
Local PE as node features. Sum over the rows  Local SE as node features. Diagonal of the  Nodes features X* are MPNN layer can be any model acting on a given node’s
of non-diagonal elements of the random walkm-steps random walk matrix tothe with edge features
matrix. w,, = £,(D7'A)™ — i, Wy, = diag((D1A)™). positional features. Transformer layer can be any fully-connected layer that
Global PE as node features. Eigenvectors of  Global SE as node features. k-lowest Global features g are ‘works with a variable number of input nodes without
the Laplacian gb associated to the k-lowest eigenvalues of the Laplacian A concatenated to the node  edge features.
non-zero eigenvalues. features. L-layers are repeated, with [ being the current layer’s
Relative PE as edge features. Pair -wise Relative SE as edge features. Boolean Edge features E¥ are index.
difference of local/global PE. Shown below is  indicating if two nodes belong to the same to the relative for the MPNN and Transformer
the gradient of the eigenvectors V¢, sub-structure. PE/SE. layers are omitted for clarity.

MLPs mix the node/edge features with the PE and SE.
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Figure 5: Modular GPS graph Transformer, with examples of PE and SE.



Recipe for a General, Powerful, Scalable Graph

Transformer (Neurips, 2022) [Rampések et al., 2022]
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Figure 6: Simplified Architecture

Sahar Almahfouz Nasser Graphs Connect Things



Main Ingradients

@ positional/structural encoding

@ local message-passing mechanism

@ global attention mechanism
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Recipe for a General, Powerful, Scalable Graph

Transformer (Neurips, 2022) [Rampések et al., 2022]

Table 1: The proposed categorization of positional encodings (PE) and structural encodings (SE).
Some encodings are assigned to multiple categories in order to show their multiple expected roles.

Encoding type Description Examples
Allow a node to know its position and role
) within a local cluster of nodes. « Sum each column of non-diagonal elements of the m-steps
Local PE  Within a cluster, the closer two nodes are  random walk matrix.

node features  to each other, the closer their local PEwill + Distance between a node and the centroid of a cluster con-
be, such as the position of a word in @ sen-  taining the node.
tence (not in the text).

Allow a node to know its global position * Eigenvectors of the Adjacency. Laplacian [15, 36] or dis-
G ;. within the graph. tance matrices "
Slobal PE 3 the closer hwo nodes are, * SignNet [39] (includes aspects of relaive PE and local SE).
node Jeatures i, cjoser their global PE will be, such as * Distance from the graph's centroid.

e position of a word in a fext + Unique identifier for cach connccted component of the

graph.

3 36, 63 44] based on

Allow two nodes to understand their dis-
lirecti i i . Green's func-

tances or
Edge embedding that is correlated to the
distance given by any global or local PE,
such as the distance between two words.

+ Pairwise node distances (38,
s, heat kernels,

tion, graph gsudssm or any ]uLa]/{,]obd] 5

Gradient of eigenvectors [3, 36] or any local/global PE.

PEG layer [57] with specific node-wise distances.

Boolean indicating if two nodes are in the same cluster.

* Degree of a node [63].
Allow a node to understand what sub- « Diagonal of the m-steps random-walk matrix [16].
Local SE structures it is a part of. « Time-derivative of the heat-kernel diagonal (gives the de-
. Given an SE of radius m, the more similar ree at ¢t = 0).
node features ¢ g
the m-hop subgraphs around two nodes + Enumerate or count predefined structures such as triangles,
are, the closer their local SE will be. rings, etc.
« Ricei curvature [54].

Relative PE
edge features

. . Provide the network with information « Eigenvalues of the Adjacency or Laplacian matrices [36].

Global SE  about the global structure of the graph.  « Graph properties: diameter, girth, number of connected

graph features The more similar two graphs are, the  components, # of nodes, # of edges, nodes-to-edges ratio.
closer their global SE will be.

.. Allow two nodes to understand how much « Pair-wise distance, enwdm;: or gradient of any ]uu] SE
Relative SE  their structures differ. + Boolean indicating if t nodes are in the E
edge features  Edge embedding that is correlared to the " gructure [3] (simifar to the gradient of sub- structure ano-

difference between any local SE. meration).
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ZINC PCOM-I.\/]\'ZC[FAR“J MalNet ZINC PCQM-’I.VI\'Z(,“_.AR“' MalNet

Ablation subset -Tiny Ablation subset -Tiny
MAE| MAE| Acc.t Ace MAE| MAE| Acc.t Ace.T
2 none 0.070 0.1213 69.95 92.23 none 0.113 0.1355 71.49 92.64
E E Transformer | 0.070 0.1159 72.31 93.50 RWSE 0.070 0.1159 71.96 92.77
Cc" g Performer 0.071 01142 70.67 9264 % LapPE 0.116 ~ 0.1201 7231 92.74
< BigBird 0071 01237 7048 92.34 | SignNetMLP 0.090 01158 7174 92.57
none 0217 03294 6886 7390  F oor RenmzAme
Z GINE 00707 01284 7L11 9227 i : = I -
& GatedGCN | 0086 OIS 7231 9264 Encodings arc color-coded by thei positional or sructural type
PNA 0.070 0.1409 7342 91.67

Figure 7: Ablation Study

e Updating the edge/node features of the graph by combining
the outputs (feature embeddings) of local message passing
layer (Gated GCN/GINE/PNA) and global attention layer
(transformer) while using the edges encodings from the
message passing layer only.
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A Generalization of ViT /MLP-MIXER to Graphs (Meta,

Dec/2022) [He et al., 2022]

@ The architecture achieves: long range dependencies,
expressivisity, efficiency (speed, low memory, linear
complexity)

@ Patching, Overlapped Patches, Node/Patch position encoding

@ It shows high expressivity in terms of graph isomorphism
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Comparison

Table 1: Differences between ViT/MLP-Mixer components for images and graphs.

Images

Graphs

i !
IODECE0ES Bl Spets

Input

Regular grid
Same data resolution
(Height, Width)

Irregular domain
Variable data structure
(# Nodes and # Edges)

Patch Extraction

Via pixel reordering
Non-overlapping patches
Same patches at each epoch

Via graph clustering algorithm
Overlapping patches
Different patches at each epoch

Patch Encoder

Same patch resolution
(Patch Height, Patch Width)
MLP (equivalently CNN)

Variable patch structure
(# Nodes and # Edges)
GNN (e.g. GCN, GAT, GT)

Positional Information

Implicitly ordered
(No need for explicit PE)

No universal ordering
Node PE for patch encoder
Patch PE for token mixer

ViT / MLP-Mixer

MLP / Channel mixer
MHA / Token mixer

MLP / Channel mixer
gMHA / Token mixer
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Architecture
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Attending to Graph Transformers (Intel,

2023) [Miller et al., 2023]

@ Review on transformers’ categories
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Attending to Graph Transformers

Graph Transformer

Input Features (Sec. 2.3] Tokens [Sec. 2.4 Propagation |Sec. 2.5

LTs 1

Coarforme G LG GK.
ST MTPATNG TokeaGT  TramsbotmerM Exph e
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Thank you
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